Browser Session Analytics: The Key to Fraud Detection

Rate this content
Bookmark

This talk will show how a fraud detection model has been developed based on the data from the browsing sessions of the different users. Tools such as PySpark and Spark ML have been used in this initiative due to a large amount of data.


The model created was able to identify a grouping of characteristics that covered 10% of the total sessions in which 88% were deemed fraudulent. This allows analysts to spend more of their time on higher-risk cases.

This talk has been presented at ML conf EU 2020, check out the latest edition of this Tech Conference.

FAQ

Javier Arcaide is a data scientist at Blue Tab Solutions, where he designs and develops machine learning solutions.

Blue Tab Solutions is known for its expertise in advanced analytics and big data, helping clients with projects related to these fields.

Financial fraud has grown dramatically in recent years, and this trend has worsened due to the pandemic situation.

The financial sector client asked Blue Tab Solutions to improve their methods for detecting financial fraud on their online banking applications.

The client provided a data set from Adobe Omniture containing around 80 million records of online banking app sessions, and a data set containing frauds detected by their fraud team in recent months.

Blue Tab Solutions used the CRISPM data mining methodology, which divides the solution into five major phases: business understanding, data understanding, data preparation, modeling and validation, and deployment.

During the data understanding phase, it was discovered that 70% of fraudulent sessions accessed the mobile cast page from the web application, 90% of sessions from the UMI Plus device were fraudulent, and 75% of fraudulent sessions used Windows 8.1 as the operating system.

In the data preparation phase, the data was cleansed, new values and outliers were identified, and mathematical transformations such as exponential or logarithmic functions were applied to improve data distribution for better model training.

During the modeling and validation phase, algorithms from SparkML libraries, including decision trees, random forest classifiers, and gradient boosting classifiers, were used to create the models.

The model validation revealed that the gradient boosting classifier yielded the best result with a score of 0.94 on the area under the curve, identifying a group of sessions covering 10% of total sessions where 90% of the frauds were included.

Using big data tools like PySpark is important because they allow the processing of the full population of data, leading to more accurate models and the ability to handle large datasets efficiently.

Javier Alcaide Pérez
Javier Alcaide Pérez
7 min
02 Jul, 2021

Comments

Sign in or register to post your comment.
Video Summary and Transcription
In this video, the focus is on browser session analytics and its role in financial fraud detection. The use of tools like PySpark and the CRISPM methodology is highlighted, emphasizing their importance in analyzing large datasets. The video explores the efficient use of the Pearson Correlation Matrix for feature selection and the deployment of models on big data platforms using HDFS and Spark. Techniques such as decision trees, random forest classifiers, and gradient boosting classifiers are discussed. The validation phase uses the area under the ROC curve as a key metric due to the imbalanced nature of fraud detection datasets. The GVT classifier achieved a high score of 0.94, identifying a significant portion of fraudulent sessions. Regular updates and real-time application of these models are crucial for maintaining their effectiveness.

1. Financial Fraud Detection with CRISPM Methodology

Short description:

Hello, I'm Javier Arcaide, a data scientist at Blue Tab Solutions. We specialize in advanced analytics and big data. We recently worked on improving financial fraud detection for a client in the financial sector. Using Spark and the CRISPM methodology, we analyzed the data sets and discovered valuable insights, such as the correlation between fraudulent sessions and the mobile cast page accessed from the web application. By selecting the best features and cleansing the data, we created more accurate models for detecting fraudulent transactions.

Hello, I'm Javier Arcaide. I work as a data scientist in Blue Tab Solutions, designing and developing machine learning solutions. In Blue Tab, we are experts in advanced analytics and big data, which allows us to help our clients in this kind of project.

Throughout the last few years, the financial fraud has grown dramatically, and this trend has been getting worse with the pandemic situation. At the beginning of the year, one of our clients in the financial sector asked us to improve the way they had to detect financial fraud on their online banking applications. To solve this problem, they provided us with a data set from Adobe Omniture, containing around 80 million records of the different online banking app sessions, each one with 45 fields of information, along with a data set containing the frauds detected by their fraud team in the recent months. We attacked the problem using our client's big data platform, and due to the size of the data sets, we decided to use Spark for the processing and analysis of the data.

Our approach uses a well-known data mining methodology, CRISPM. This process divides the solution in five major phases. The first one is business understanding. The purpose of this phase is to align the objectives of the project with their business objectives. We focused on understanding the client's expectations and the project goals. With this knowledge of the problem, we designate a preliminary planning in order to achieve the objectives. The second phase is data understanding. We consider this the most important phase of the methodology. On it, the goal is to know the data. It's a structure and distribution and the quality of it. We started with an univariate analysis of the data sets columns against the target. Our conclusions from this analysis were crucial to decide which variables would be included in the training of the model. In this phase, we discovered, for example, that on the 70% of the fraudulent sessions, the mobile cast page was accessed from the web application. The 90% of the sessions opened from this particular device, UMI plus, were fraudulent. This covered around 15% of the frauds. In around 75% of the fraudulent sessions, the operating system we used was Windows 8.1. The extraction of these insights is the differential value that a data scientist can offer in the creation of models. Through this acquired knowledge and selecting the best features, we were able to create much more accurate models for the detection of fraudulent transactions. The third phase is data preparation. When the variables are selected, it is time to prepare the dataset to train the different models. It is typically necessary to cleanse the data, ensuring that new values and outliers are identified. This, combined with mathematical transformations such as exponential or logarithmic functions can improve the dispersion of distribution which helps better train the model. The entire cleansing and transformations result in a new dataset with more than 200 features.

2. Modeling, Validation, and Deployment

Short description:

We used the Pearson Correlation Matrix to group features and select the best one for the model. Decision trees, random forest classifiers, and gradient boosting classifiers were used to create the models. The validation phase used the area under the ROC curve as a metric. The deployment phase involved using the clients' big data platform based on HDFS and Spark. The GVT classifier yielded the best result with a score of 0.94. The model identified a grouping of sessions covering 10% of total sessions, including 90% of frauds. Working with big data tools like PySpark is essential for accurate models. Regular training is necessary as these models become outdated quickly. The next steps involve working with the model in real-time for swift action when fraud is detected.

We use the Pearson Correlation Matrix to group the features in correlated families, where we can choose the best one in the model. The fourth phase is modeling and validation. Once the training dataset was constructed, we used the algorithm contained in the libraries of SparkML. Specifically, decision trees, random forest classifiers and gradient boosting classifiers to create our models.

For the validation, we decided to use the area under the rock curve as a metric because the target was not balanced in the dataset, which implies that metrics as accuracy cannot be used. In the deployment phase, the last one, we use our clients' big data platform based on HDFS and Spark to deploy the model. It runs once a day with the data of the date before, which has around six million records. Since the model is designed and developed using Spark, it is possible to deploy it in any platform, cloud or on-premise, capable of deploying Spark apps.

After the validation of the model, we found that the GVT classifier yielded the best result, with a score of 0.94 on the area under the curve. The model created was able to identify a grouping of sessions which covered 10% of the total sessions, where the 90% of the frauds were included. This allows analysts to spend more of their time on higher risk cases. In conclusion, in order to have more accurate models, it is important to use the full population of the data. This would be impossible without working with big data tools as PySpark. These great results are based on the previous study of the variables, and the insights obtained during the analysis. On the other hand, this kind of model becomes outdated quite fast, so it is necessary to train it regularly, usually every two months. Next steps would be to work with this model in real-time, so the clients can take action swiftly when the fraud is detected, such as asking for a double authentication or blocking the transactions if the model predicts fraudulent actions.

Check out more articles and videos

We constantly think of articles and videos that might spark Git people interest / skill us up or help building a stellar career

TensorFlow.js 101: ML in the Browser and Beyond
ML conf EU 2020ML conf EU 2020
41 min
TensorFlow.js 101: ML in the Browser and Beyond
TensorFlow.js enables machine learning in the browser and beyond, with features like face mesh, body segmentation, and pose estimation. It offers JavaScript prototyping and transfer learning capabilities, as well as the ability to recognize custom objects using the Image Project feature. TensorFlow.js can be used with Cloud AutoML for training custom vision models and provides performance benefits in both JavaScript and Python development. It offers interactivity, reach, scale, and performance, and encourages community engagement and collaboration between the JavaScript and machine learning communities.
Using MediaPipe to Create Cross Platform Machine Learning Applications with React
React Advanced 2021React Advanced 2021
21 min
Using MediaPipe to Create Cross Platform Machine Learning Applications with React
Top Content
MediaPipe is a cross-platform framework that helps build perception pipelines using machine learning models. It offers ready-to-use solutions for various applications, such as selfie segmentation, face mesh, object detection, hand tracking, and more. MediaPipe can be integrated with React using NPM modules provided by the MediaPipe team. The demonstration showcases the implementation of face mesh and selfie segmentation solutions. MediaPipe enables the creation of amazing applications without needing to understand the underlying computer vision or machine learning processes.
Charlie Gerard's Career Advice: Be intentional about how you spend your time and effort
Charlie Gerard's Career Advice: Be intentional about how you spend your time and effort
Article
Charlie Gerard
Charlie Gerard
When it comes to career, Charlie has one trick: to focus. But that doesn’t mean that you shouldn’t try different things — currently a senior front-end developer at Netlify, she is also a sought-after speaker, mentor, and a machine learning trailblazer of the JavaScript universe. "Experiment with things, but build expertise in a specific area," she advises.
What led you to software engineering?My background is in digital marketing, so I started my career as a project manager in advertising agencies. After a couple of years of doing that, I realized that I wasn't learning and growing as much as I wanted to. I was interested in learning more about building websites, so I quit my job and signed up for an intensive coding boot camp called General Assembly. I absolutely loved it and started my career in tech from there.
What is the most impactful thing you ever did to boost your career?I think it might be public speaking. Going on stage to share knowledge about things I learned while building my side projects gave me the opportunity to meet a lot of people in the industry, learn a ton from watching other people's talks and, for lack of better words, build a personal brand.
What would be your three tips for engineers to level up their career?Practice your communication skills. I can't stress enough how important it is to be able to explain things in a way anyone can understand, but also communicate in a way that's inclusive and creates an environment where team members feel safe and welcome to contribute ideas, ask questions, and give feedback. In addition, build some expertise in a specific area. I'm a huge fan of learning and experimenting with lots of technologies but as you grow in your career, there comes a time where you need to pick an area to focus on to build more profound knowledge. This could be in a specific language like JavaScript or Python or in a practice like accessibility or web performance. It doesn't mean you shouldn't keep in touch with anything else that's going on in the industry, but it means that you focus on an area you want to have more expertise in. If you could be the "go-to" person for something, what would you want it to be? 
And lastly, be intentional about how you spend your time and effort. Saying yes to everything isn't always helpful if it doesn't serve your goals. No matter the job, there are always projects and tasks that will help you reach your goals and some that won't. If you can, try to focus on the tasks that will grow the skills you want to grow or help you get the next job you'd like to have.
What are you working on right now?Recently I've taken a pretty big break from side projects, but the next one I'd like to work on is a prototype of a tool that would allow hands-free coding using gaze detection. 
Do you have some rituals that keep you focused and goal-oriented?Usually, when I come up with a side project idea I'm really excited about, that excitement is enough to keep me motivated. That's why I tend to avoid spending time on things I'm not genuinely interested in. Otherwise, breaking down projects into smaller chunks allows me to fit them better in my schedule. I make sure to take enough breaks, so I maintain a certain level of energy and motivation to finish what I have in mind.
You wrote a book called Practical Machine Learning in JavaScript. What got you so excited about the connection between JavaScript and ML?The release of TensorFlow.js opened up the world of ML to frontend devs, and this is what really got me excited. I had machine learning on my list of things I wanted to learn for a few years, but I didn't start looking into it before because I knew I'd have to learn another language as well, like Python, for example. As soon as I realized it was now available in JS, that removed a big barrier and made it a lot more approachable. Considering that you can use JavaScript to build lots of different applications, including augmented reality, virtual reality, and IoT, and combine them with machine learning as well as some fun web APIs felt super exciting to me.

Where do you see the fields going together in the future, near or far? I'd love to see more AI-powered web applications in the future, especially as machine learning models get smaller and more performant. However, it seems like the adoption of ML in JS is still rather low. Considering the amount of content we post online, there could be great opportunities to build tools that assist you in writing blog posts or that can automatically edit podcasts and videos. There are lots of tasks we do that feel cumbersome that could be made a bit easier with the help of machine learning.
You are a frequent conference speaker. You have your own blog and even a newsletter. What made you start with content creation?I realized that I love learning new things because I love teaching. I think that if I kept what I know to myself, it would be pretty boring. If I'm excited about something, I want to share the knowledge I gained, and I'd like other people to feel the same excitement I feel. That's definitely what motivated me to start creating content.
How has content affected your career?I don't track any metrics on my blog or likes and follows on Twitter, so I don't know what created different opportunities. Creating content to share something you built improves the chances of people stumbling upon it and learning more about you and what you like to do, but this is not something that's guaranteed. I think over time, I accumulated enough projects, blog posts, and conference talks that some conferences now invite me, so I don't always apply anymore. I sometimes get invited on podcasts and asked if I want to create video content and things like that. Having a backlog of content helps people better understand who you are and quickly decide if you're the right person for an opportunity.What pieces of your work are you most proud of?It is probably that I've managed to develop a mindset where I set myself hard challenges on my side project, and I'm not scared to fail and push the boundaries of what I think is possible. I don't prefer a particular project, it's more around the creative thinking I've developed over the years that I believe has become a big strength of mine.***Follow Charlie on Twitter
TensorFlow.JS 101: ML in the Browser and Beyond
JSNation Live 2021JSNation Live 2021
39 min
TensorFlow.JS 101: ML in the Browser and Beyond
JavaScript with TensorFlow.js allows for machine learning in various environments, enabling the creation of applications like augmented reality and sentiment analysis. TensorFlow.js offers pre-trained models for object detection, body segmentation, and face landmark detection. It also allows for 3D rendering and the combination of machine learning with WebGL. The integration of WebRTC and WebXR enables teleportation and enhanced communication. TensorFlow.js supports transfer learning through Teachable Machine and Cloud AutoML, and provides flexibility and performance benefits in the browser and Node.js environments.
Observability with diagnostics_channel and AsyncLocalStorage
Node Congress 2023Node Congress 2023
21 min
Observability with diagnostics_channel and AsyncLocalStorage
Observability with Diagnostics Channel and async local storage allows for high-performance event tracking and propagation of values through calls, callbacks, and promise continuations. Tracing involves five events and separate channels for each event, capturing errors and return values. The span object in async local storage stores data about the current execution and is reported to the tracer when the end is triggered.
An Introduction to Transfer Learning in NLP and HuggingFace
ML conf EU 2020ML conf EU 2020
32 min
An Introduction to Transfer Learning in NLP and HuggingFace
Transfer learning in NLP allows for better performance with minimal data. BERT is commonly used for sequential transfer learning. Models like BERT can be adapted for downstream tasks such as text classification. Handling different types of inputs in NLP involves concatenating or duplicating the model. Hugging Face aims to tackle challenges in NLP through knowledge sharing and open sourcing code and libraries.

Workshops on related topic

Leveraging LLMs to Build Intuitive AI Experiences With JavaScript
JSNation 2024JSNation 2024
108 min
Leveraging LLMs to Build Intuitive AI Experiences With JavaScript
Featured Workshop
Roy Derks
Shivay Lamba
2 authors
Today every developer is using LLMs in different forms and shapes, from ChatGPT to code assistants like GitHub CoPilot. Following this, lots of products have introduced embedded AI capabilities, and in this workshop we will make LLMs understandable for web developers. And we'll get into coding your own AI-driven application. No prior experience in working with LLMs or machine learning is needed. Instead, we'll use web technologies such as JavaScript, React which you already know and love while also learning about some new libraries like OpenAI, Transformers.js
Can LLMs Learn? Let’s Customize an LLM to Chat With Your Own Data
C3 Dev Festival 2024C3 Dev Festival 2024
48 min
Can LLMs Learn? Let’s Customize an LLM to Chat With Your Own Data
WorkshopFree
Andreia Ocanoaia
Andreia Ocanoaia
Feeling the limitations of LLMs? They can be creative, but sometimes lack accuracy or rely on outdated information. In this workshop, we’ll break down the process of building and easily deploying a Retrieval-Augmented Generation system. This approach enables you to leverage the power of LLMs with the added benefit of factual accuracy and up-to-date information.
Let AI Be Your Docs
JSNation 2024JSNation 2024
69 min
Let AI Be Your Docs
Workshop
Jesse Hall
Jesse Hall
Join our dynamic workshop to craft an AI-powered documentation portal. Learn to integrate OpenAI's ChatGPT with Next.js 14, Tailwind CSS, and cutting-edge tech to deliver instant code solutions and summaries. This hands-on session will equip you with the knowledge to revolutionize how users interact with documentation, turning tedious searches into efficient, intelligent discovery.
Key Takeaways:
- Practical experience in creating an AI-driven documentation site.- Understanding the integration of AI into user experiences.- Hands-on skills with the latest web development technologies.- Strategies for deploying and maintaining intelligent documentation resources.
Table of contents:- Introduction to AI in Documentation- Setting Up the Environment- Building the Documentation Structure- Integrating ChatGPT for Interactive Docs
Hands on with TensorFlow.js
ML conf EU 2020ML conf EU 2020
160 min
Hands on with TensorFlow.js
Workshop
Jason Mayes
Jason Mayes
Come check out our workshop which will walk you through 3 common journeys when using TensorFlow.js. We will start with demonstrating how to use one of our pre-made models - super easy to use JS classes to get you working with ML fast. We will then look into how to retrain one of these models in minutes using in browser transfer learning via Teachable Machine and how that can be then used on your own custom website, and finally end with a hello world of writing your own model code from scratch to make a simple linear regression to predict fictional house prices based on their square footage.
The Hitchhiker's Guide to the Machine Learning Engineering Galaxy
ML conf EU 2020ML conf EU 2020
112 min
The Hitchhiker's Guide to the Machine Learning Engineering Galaxy
Workshop
Alyona Galyeva
Alyona Galyeva
Are you a Software Engineer who got tasked to deploy a machine learning or deep learning model for the first time in your life? Are you wondering what steps to take and how AI-powered software is different from traditional software? Then it is the right workshop to attend.
The internet offers thousands of articles and free of charge courses, showing how it is easy to train and deploy a simple AI model. At the same time in reality it is difficult to integrate a real model into the current infrastructure, debug, test, deploy, and monitor it properly. In this workshop, I will guide you through this process sharing tips, tricks, and favorite open source tools that will make your life much easier. So, at the end of the workshop, you will know where to start your deployment journey, what tools to use, and what questions to ask.
Introduction to Machine Learning on the Cloud
ML conf EU 2020ML conf EU 2020
146 min
Introduction to Machine Learning on the Cloud
Workshop
Dmitry Soshnikov
Dmitry Soshnikov
This workshop will be both a gentle introduction to Machine Learning, and a practical exercise of using the cloud to train simple and not-so-simple machine learning models. We will start with using Automatic ML to train the model to predict survival on Titanic, and then move to more complex machine learning tasks such as hyperparameter optimization and scheduling series of experiments on the compute cluster. Finally, I will show how Azure Machine Learning can be used to generate artificial paintings using Generative Adversarial Networks, and how to train language question-answering model on COVID papers to answer COVID-related questions.