Introduction to Machine Learning on the Cloud

certificate
Recording and certification are available to Multipass and Full ticket holders only
Please login if you have one.
Rate this content
Bookmark

This workshop will be both a gentle introduction to Machine Learning, and a practical exercise of using the cloud to train simple and not-so-simple machine learning models. We will start with using Automatic ML to train the model to predict survival on Titanic, and then move to more complex machine learning tasks such as hyperparameter optimization and scheduling series of experiments on the compute cluster. Finally, I will show how Azure Machine Learning can be used to generate artificial paintings using Generative Adversarial Networks, and how to train language question-answering model on COVID papers to answer COVID-related questions.

This workshop has been presented at ML conf EU 2020, check out the latest edition of this Tech Conference.

FAQ

Azure Machine Learning is a cloud-based service from Microsoft that provides various tools and services specifically designed for machine learning tasks. It allows users to create, train, and deploy machine learning models using a variety of tools, including virtual machines, clusters, and pre-trained models.

To start using Azure Machine Learning, you need to create an Azure Machine Learning workspace. This can be done through the Azure portal by selecting 'Create a resource' and searching for 'Machine Learning Workspace'. Once created, you can launch the Azure Machine Learning Studio to access various tools and services.

Azure Machine Learning can be used in multiple ways: 1. Using pre-built services such as AutoML and Designer for no-code and low-code solutions. 2. Running custom scripts and experiments from Visual Studio Code or Jupyter Notebooks. 3. Training and deploying models using clusters and virtual machines. 4. Utilizing cognitive services for tasks like computer vision and speech-to-text.

AutoML, or Automated Machine Learning, is a feature in Azure Machine Learning that automatically tries different machine learning models and hyperparameters to find the best model for a given dataset. It simplifies the process of model selection and tuning without requiring extensive knowledge of machine learning.

To use AutoML in Azure Machine Learning, follow these steps: 1. Upload your dataset to the Azure Machine Learning workspace. 2. Navigate to the 'Automated ML' section in the Azure Machine Learning Studio. 3. Create a new AutoML run by selecting your dataset, specifying the target column, and choosing the type of machine learning task (e.g., classification, regression). 4. Choose the compute cluster for running the experiments and start the AutoML run.

Azure Databricks is a big data analytics service that provides a fast, easy, and collaborative Apache Spark-based analytics platform. It is designed for big data processing and analytics, allowing users to process large datasets using clusters. Azure Machine Learning, on the other hand, is focused on building, training, and deploying machine learning models. While Azure Databricks is more suited for big data tasks, Azure Machine Learning is tailored for machine learning workflows.

Yes, you can use Jupyter Notebooks with Azure Machine Learning. You can create or upload Jupyter Notebooks in the Azure Machine Learning Studio and run them using compute instances. This allows you to write and execute Python code for data analysis, model training, and experimentation directly within the Azure Machine Learning environment.

The Azure Machine Learning workspace is a central place that contains everything needed for machine learning tasks. It includes data storage, datasets, compute resources, experiments, and models. The workspace allows users to organize and manage all aspects of their machine learning projects in one place.

To deploy a trained model in Azure Machine Learning, follow these steps: 1. Register the trained model in the Azure Machine Learning workspace. 2. Create a scoring script that defines how the model should be used for predictions. 3. Define the environment and dependencies required for the model. 4. Deploy the model to a compute target such as an Azure Kubernetes Service (AKS) cluster or an Azure Container Instance (ACI).

Dmitry Soshnikov
Dmitry Soshnikov
146 min
22 Jul, 2021

Comments

Sign in or register to post your comment.
Video Summary and Transcription
The video discusses the use of Azure Machine Learning for training models in the cloud. It highlights the importance of using low priority VMs in Azure to save costs and the need to structure training scripts to be resumable. The video explains how to create a dataset from web files and use the Titanic dataset as an example, emphasizing the importance of selecting relevant features like gender, age, and class for model training. Azure Machine Learning provides tools like AutoML and Designer for no-code model training, making it accessible for beginners. The video also covers the use of Jupyter Notebooks for connecting to the data store and running models, as well as the process of scheduling experiments on clusters for collaborative projects. Advanced topics such as hyperparameter optimization, distributed training, and the use of GANs for generating paintings are also discussed. The speaker provides practical tips on using Azure ML efficiently, such as enabling SSH access, choosing the right virtual machine type, and avoiding unnecessary costs by deleting resources after use.
Video transcription and chapters available for users with access.

Watch more workshops on topic

Leveraging LLMs to Build Intuitive AI Experiences With JavaScript
JSNation 2024JSNation 2024
108 min
Leveraging LLMs to Build Intuitive AI Experiences With JavaScript
Featured Workshop
Roy Derks
Shivay Lamba
2 authors
Today every developer is using LLMs in different forms and shapes, from ChatGPT to code assistants like GitHub CoPilot. Following this, lots of products have introduced embedded AI capabilities, and in this workshop we will make LLMs understandable for web developers. And we'll get into coding your own AI-driven application. No prior experience in working with LLMs or machine learning is needed. Instead, we'll use web technologies such as JavaScript, React which you already know and love while also learning about some new libraries like OpenAI, Transformers.js
Going on an adventure with Nuxt 3, Motion UI and Azure
JSNation 2022JSNation 2022
141 min
Going on an adventure with Nuxt 3, Motion UI and Azure
WorkshopFree
Melanie de Leeuw
Melanie de Leeuw
We love easily created and deployed web applications! So, let’s see what a very current tech stack like Nuxt 3, Motion UI and Azure Static Web Apps can do for us. It could very well be a golden trio in modern day web development. Or it could be a fire pit of bugs and errors. Either way it will be a learning adventure for us all. Nuxt 3 has been released just a few months ago, and we cannot wait any longer to explore its new features like its acceptance of Vue 3 and the Nitro Engine. We add a bit of pizzazz to our application with the Sass library Motion UI, because static design is out, and animations are in again.Our driving power of the stack will be Azure. Azure static web apps are new, close to production and a nifty and quick way for developers to deploy their websites. So of course, we must try this out.With some sprinkled Azure Functions on top, we will explore what web development in 2022 can do.
Azure Static Web Apps (SWA) with Azure DevOps
DevOps.js Conf 2022DevOps.js Conf 2022
13 min
Azure Static Web Apps (SWA) with Azure DevOps
WorkshopFree
Juarez Barbosa Junior
Juarez Barbosa Junior
Azure Static Web Apps were launched earlier in 2021, and out of the box, they could integrate your existing repository and deploy your Static Web App from Azure DevOps. This workshop demonstrates how to publish an Azure Static Web App with Azure DevOps.
Can LLMs Learn? Let’s Customize an LLM to Chat With Your Own Data
C3 Dev Festival 2024C3 Dev Festival 2024
48 min
Can LLMs Learn? Let’s Customize an LLM to Chat With Your Own Data
WorkshopFree
Andreia Ocanoaia
Andreia Ocanoaia
Feeling the limitations of LLMs? They can be creative, but sometimes lack accuracy or rely on outdated information. In this workshop, we’ll break down the process of building and easily deploying a Retrieval-Augmented Generation system. This approach enables you to leverage the power of LLMs with the added benefit of factual accuracy and up-to-date information.
How to develop, build, and deploy Node.js microservices with Pulumi and Azure DevOps
DevOps.js Conf 2022DevOps.js Conf 2022
163 min
How to develop, build, and deploy Node.js microservices with Pulumi and Azure DevOps
Workshop
Alex Korzhikov
Andrew Reddikh
2 authors
The workshop gives a practical perspective of key principles needed to develop, build, and maintain a set of microservices in the Node.js stack. It covers specifics of creating isolated TypeScript services using the monorepo approach with lerna and yarn workspaces. The workshop includes an overview and a live exercise to create cloud environment with Pulumi framework and Azure services. The sessions fits the best developers who want to learn and practice build and deploy techniques using Azure stack and Pulumi for Node.js.
Let AI Be Your Docs
JSNation 2024JSNation 2024
69 min
Let AI Be Your Docs
Workshop
Jesse Hall
Jesse Hall
Join our dynamic workshop to craft an AI-powered documentation portal. Learn to integrate OpenAI's ChatGPT with Next.js 14, Tailwind CSS, and cutting-edge tech to deliver instant code solutions and summaries. This hands-on session will equip you with the knowledge to revolutionize how users interact with documentation, turning tedious searches into efficient, intelligent discovery.
Key Takeaways:
- Practical experience in creating an AI-driven documentation site.- Understanding the integration of AI into user experiences.- Hands-on skills with the latest web development technologies.- Strategies for deploying and maintaining intelligent documentation resources.
Table of contents:- Introduction to AI in Documentation- Setting Up the Environment- Building the Documentation Structure- Integrating ChatGPT for Interactive Docs

Check out more articles and videos

We constantly think of articles and videos that might spark Git people interest / skill us up or help building a stellar career

TensorFlow.js 101: ML in the Browser and Beyond
ML conf EU 2020ML conf EU 2020
41 min
TensorFlow.js 101: ML in the Browser and Beyond
TensorFlow.js enables machine learning in the browser and beyond, with features like face mesh, body segmentation, and pose estimation. It offers JavaScript prototyping and transfer learning capabilities, as well as the ability to recognize custom objects using the Image Project feature. TensorFlow.js can be used with Cloud AutoML for training custom vision models and provides performance benefits in both JavaScript and Python development. It offers interactivity, reach, scale, and performance, and encourages community engagement and collaboration between the JavaScript and machine learning communities.
Using MediaPipe to Create Cross Platform Machine Learning Applications with React
React Advanced 2021React Advanced 2021
21 min
Using MediaPipe to Create Cross Platform Machine Learning Applications with React
Top Content
MediaPipe is a cross-platform framework that helps build perception pipelines using machine learning models. It offers ready-to-use solutions for various applications, such as selfie segmentation, face mesh, object detection, hand tracking, and more. MediaPipe can be integrated with React using NPM modules provided by the MediaPipe team. The demonstration showcases the implementation of face mesh and selfie segmentation solutions. MediaPipe enables the creation of amazing applications without needing to understand the underlying computer vision or machine learning processes.
Charlie Gerard's Career Advice: Be intentional about how you spend your time and effort
Charlie Gerard's Career Advice: Be intentional about how you spend your time and effort
Article
Charlie Gerard
Charlie Gerard
When it comes to career, Charlie has one trick: to focus. But that doesn’t mean that you shouldn’t try different things — currently a senior front-end developer at Netlify, she is also a sought-after speaker, mentor, and a machine learning trailblazer of the JavaScript universe. "Experiment with things, but build expertise in a specific area," she advises.
What led you to software engineering?My background is in digital marketing, so I started my career as a project manager in advertising agencies. After a couple of years of doing that, I realized that I wasn't learning and growing as much as I wanted to. I was interested in learning more about building websites, so I quit my job and signed up for an intensive coding boot camp called General Assembly. I absolutely loved it and started my career in tech from there.
What is the most impactful thing you ever did to boost your career?I think it might be public speaking. Going on stage to share knowledge about things I learned while building my side projects gave me the opportunity to meet a lot of people in the industry, learn a ton from watching other people's talks and, for lack of better words, build a personal brand.
What would be your three tips for engineers to level up their career?Practice your communication skills. I can't stress enough how important it is to be able to explain things in a way anyone can understand, but also communicate in a way that's inclusive and creates an environment where team members feel safe and welcome to contribute ideas, ask questions, and give feedback. In addition, build some expertise in a specific area. I'm a huge fan of learning and experimenting with lots of technologies but as you grow in your career, there comes a time where you need to pick an area to focus on to build more profound knowledge. This could be in a specific language like JavaScript or Python or in a practice like accessibility or web performance. It doesn't mean you shouldn't keep in touch with anything else that's going on in the industry, but it means that you focus on an area you want to have more expertise in. If you could be the "go-to" person for something, what would you want it to be? 
And lastly, be intentional about how you spend your time and effort. Saying yes to everything isn't always helpful if it doesn't serve your goals. No matter the job, there are always projects and tasks that will help you reach your goals and some that won't. If you can, try to focus on the tasks that will grow the skills you want to grow or help you get the next job you'd like to have.
What are you working on right now?Recently I've taken a pretty big break from side projects, but the next one I'd like to work on is a prototype of a tool that would allow hands-free coding using gaze detection. 
Do you have some rituals that keep you focused and goal-oriented?Usually, when I come up with a side project idea I'm really excited about, that excitement is enough to keep me motivated. That's why I tend to avoid spending time on things I'm not genuinely interested in. Otherwise, breaking down projects into smaller chunks allows me to fit them better in my schedule. I make sure to take enough breaks, so I maintain a certain level of energy and motivation to finish what I have in mind.
You wrote a book called Practical Machine Learning in JavaScript. What got you so excited about the connection between JavaScript and ML?The release of TensorFlow.js opened up the world of ML to frontend devs, and this is what really got me excited. I had machine learning on my list of things I wanted to learn for a few years, but I didn't start looking into it before because I knew I'd have to learn another language as well, like Python, for example. As soon as I realized it was now available in JS, that removed a big barrier and made it a lot more approachable. Considering that you can use JavaScript to build lots of different applications, including augmented reality, virtual reality, and IoT, and combine them with machine learning as well as some fun web APIs felt super exciting to me.

Where do you see the fields going together in the future, near or far? I'd love to see more AI-powered web applications in the future, especially as machine learning models get smaller and more performant. However, it seems like the adoption of ML in JS is still rather low. Considering the amount of content we post online, there could be great opportunities to build tools that assist you in writing blog posts or that can automatically edit podcasts and videos. There are lots of tasks we do that feel cumbersome that could be made a bit easier with the help of machine learning.
You are a frequent conference speaker. You have your own blog and even a newsletter. What made you start with content creation?I realized that I love learning new things because I love teaching. I think that if I kept what I know to myself, it would be pretty boring. If I'm excited about something, I want to share the knowledge I gained, and I'd like other people to feel the same excitement I feel. That's definitely what motivated me to start creating content.
How has content affected your career?I don't track any metrics on my blog or likes and follows on Twitter, so I don't know what created different opportunities. Creating content to share something you built improves the chances of people stumbling upon it and learning more about you and what you like to do, but this is not something that's guaranteed. I think over time, I accumulated enough projects, blog posts, and conference talks that some conferences now invite me, so I don't always apply anymore. I sometimes get invited on podcasts and asked if I want to create video content and things like that. Having a backlog of content helps people better understand who you are and quickly decide if you're the right person for an opportunity.What pieces of your work are you most proud of?It is probably that I've managed to develop a mindset where I set myself hard challenges on my side project, and I'm not scared to fail and push the boundaries of what I think is possible. I don't prefer a particular project, it's more around the creative thinking I've developed over the years that I believe has become a big strength of mine.***Follow Charlie on Twitter
TensorFlow.JS 101: ML in the Browser and Beyond
JSNation Live 2021JSNation Live 2021
39 min
TensorFlow.JS 101: ML in the Browser and Beyond
JavaScript with TensorFlow.js allows for machine learning in various environments, enabling the creation of applications like augmented reality and sentiment analysis. TensorFlow.js offers pre-trained models for object detection, body segmentation, and face landmark detection. It also allows for 3D rendering and the combination of machine learning with WebGL. The integration of WebRTC and WebXR enables teleportation and enhanced communication. TensorFlow.js supports transfer learning through Teachable Machine and Cloud AutoML, and provides flexibility and performance benefits in the browser and Node.js environments.
Observability with diagnostics_channel and AsyncLocalStorage
Node Congress 2023Node Congress 2023
21 min
Observability with diagnostics_channel and AsyncLocalStorage
Observability with Diagnostics Channel and async local storage allows for high-performance event tracking and propagation of values through calls, callbacks, and promise continuations. Tracing involves five events and separate channels for each event, capturing errors and return values. The span object in async local storage stores data about the current execution and is reported to the tracer when the end is triggered.
An Introduction to Transfer Learning in NLP and HuggingFace
ML conf EU 2020ML conf EU 2020
32 min
An Introduction to Transfer Learning in NLP and HuggingFace
Transfer learning in NLP allows for better performance with minimal data. BERT is commonly used for sequential transfer learning. Models like BERT can be adapted for downstream tasks such as text classification. Handling different types of inputs in NLP involves concatenating or duplicating the model. Hugging Face aims to tackle challenges in NLP through knowledge sharing and open sourcing code and libraries.