Cómo AI Puede Automatizar el 70% de la Revisión de Código: Reduciendo la Carga y Mejorando la Calidad del Código

Video thumbnail
Recording is available to Multipass and Full ticket holders only
Please login if you have one.
Bookmark
Rate this content

Las herramientas de revisión de código impulsadas por AI están transformando el ciclo de vida del desarrollo al automatizar verificaciones repetitivas y resaltar olores de código. Esta sesión explorará cómo AI reduce el esfuerzo manual, mejora la precisión de detección y mejora la calidad general del código.

This talk has been presented at Productivity Conf for Devs and Tech Leaders, check out the latest edition of this Tech Conference.

Manasa Hari
Manasa Hari
15 min
27 Mar, 2025

Comments

Sign in or register to post your comment.
Video Summary and Transcription
Hola a todos. Soy Mansa Hari, y estoy muy emocionado de abrir la masterclass sobre cómo AI puede automatizar el 70% de la revisión de código y reducir la carga sobre los desarrolladores. AI puede reducir el tiempo de revisión, automatizar sugerencias de PR e identificar problemas de código. Implementar revisiones de código con AI puede reducir el tiempo de revisión manual, asegurar una alta calidad de código y acelerar los ciclos de desarrollo. El futuro de AI en las revisiones de código incluye entender la lógica empresarial, sugerencias de código intuitivas y revisiones híbridas AI-humano. Herramientas como Co-Pilot pueden ser utilizadas para automatizar tareas de revisión de código y mejorar la calidad del código.
Video transcription and chapters available for users with access.

Check out more articles and videos

We constantly think of articles and videos that might spark Git people interest / skill us up or help building a stellar career

IA y Desarrollo Web: ¿Exageración o Realidad?
JSNation 2023JSNation 2023
24 min
IA y Desarrollo Web: ¿Exageración o Realidad?
Top Content
This talk explores the use of AI in web development, including tools like GitHub Copilot and Fig for CLI commands. AI can generate boilerplate code, provide context-aware solutions, and generate dummy data. It can also assist with CSS selectors and regexes, and be integrated into applications. AI is used to enhance the podcast experience by transcribing episodes and providing JSON data. The talk also discusses formatting AI output, crafting requests, and analyzing embeddings for similarity.
Olvida el mal código, concéntrate en el sistema
React Summit US 2023React Summit US 2023
27 min
Olvida el mal código, concéntrate en el sistema
Top ContentPremium
Setting up the system and separating concerns are important in software development. Modular construction and prefab units are a new trend that makes construction quicker and easier. Architectural complexity can lead to a drop in productivity and an increase in defects. Measuring architectural complexity can help identify natural modules in the code. Best practices for avoiding architectural complexity include organizing code by business domain and using prop drilling. Atomic design and organizing a monorepo are recommended approaches for managing architectural complexity.
Confesiones de un Impostor
JSNation 2022JSNation 2022
46 min
Confesiones de un Impostor
Top Content
The Talk discusses imposter syndrome and reframes it as being a professional imposter. It emphasizes the importance of sharing and starting, embracing imposterism, and building inclusively for the web. The speaker shares personal experiences of being an imposter in various technical disciplines and highlights the significance of accessibility. The Talk concludes with the idea of building a collective RPG game to remove excuses for not making things accessible.
Mejorando la Felicidad del Desarrollador con IA
React Summit 2023React Summit 2023
29 min
Mejorando la Felicidad del Desarrollador con IA
GitHub Copilot is an auto-completion tool that provides suggestions based on context. Research has shown that developers using Copilot feel less frustrated, spend less time searching externally, and experience less mental effort on repetitive tasks. Copilot can generate code for various tasks, including adding modals, testing, and refactoring. It is a useful tool for improving productivity and saving time, especially for junior developers and those working in unfamiliar domains. Security concerns have been addressed with optional data sharing and different versions for individuals and businesses.
Maximize Productivity with AI Agents
Productivity Conf for Devs and Tech LeadersProductivity Conf for Devs and Tech Leaders
25 min
Maximize Productivity with AI Agents
I'm Tejas Kumar, a software developer with over 20 years of experience. AI agents are defined as entities that act on behalf of users or groups to produce specific effects. Agents consist of an orchestration layer, a language model, and tools represented as JSON functions. Langflow is an open-source tool that allows users to build their own AI agents by connecting language models and tools. Composio is a tool that enhances agent capabilities by offering integrations and apps, such as Google Calendar integration. MCP (Model Context Protocol) is a way to share context with models and extend their capabilities. It allows functions to be made available to models over standard input/output or an HTTP endpoint. MCP can be used with GitHub to perform various tasks like searching and fixing code issues. The Talk covered the basics of AI agents, building agents with Langflow and enhancing them with Composio, and using MCP with GitHub. The speaker encouraged audience questions and exploration of these concepts.
Escalando Rápido – Lecciones de Ingeniería de ~15 Años de Startups Tecnológicas
React Advanced 2024React Advanced 2024
27 min
Escalando Rápido – Lecciones de Ingeniería de ~15 Años de Startups Tecnológicas
Hey, we'll discuss scaling fast and engineering lessons learned in the last 15 years of tech startups. Scaling involves three things: business, team, and tech. Business scalability relies on sales and customer acquisition costs. Engineering is a tool the business uses. Scaling the team is vital as tech problems are often people problems. Team structure affects architecture and product development process. Organize teams based on purpose, not technology. Spend less time being blocked by other teams. Ship features without getting blocked. Own your own mess. Focus on product engineering partnership. Build faster using feedback cycles. Build appropriate solutions for your use case. Let go of ego and experiment with different approaches. Engineers own their own mess. Avoid work in progress. Finish the work and focus on fixing it later. Have a conversation before writing code. Scaling the tech is easier than you think. Pick an off the shelf design. Save innovation for core parts. Pick existing solutions. Focus on solving the problem. Don't waste time trying to predict future scale. Scale will surprise you. Do what works for your business. Push back on unnecessary complexity. Understand the cost of ideas. Modify the situation to fit existing design. Architecture is like a dependency graph on your code. Reduce architectural complexity by organizing code based on what it does. Use vertical models and avoid creating excessive dependencies. On the client, use vertical modules. On the back end, consider a service-oriented architecture. Start with a monolith and transition to microservices if necessary. Use folders instead of microservices when you have a small team. Use vertical models and contract or type-driven development to define clear APIs and interfaces. Avoid highly interconnected code and duplication. Focus on data structures to avoid complexity and the need for translation layers. Building translation layers can lead to slow user experience. Vertical teams aligned with vertical code allow for fast problem-solving, full control of features, and efficient data handling. Understanding the entire domain enables faster development with fewer bugs.

Workshops on related topic

Cómo Crear una Aplicación Web de Manera (Casi) Autónoma Usando Clean Coder
Productivity Conf for Devs and Tech LeadersProductivity Conf for Devs and Tech Leaders
95 min
Cómo Crear una Aplicación Web de Manera (Casi) Autónoma Usando Clean Coder
Workshop
Grigorij Dudnik
Grigorij Dudnik
Imagina reemplazarte a ti mismo con un programador de IA multi-agente para desarrollar tu aplicación web de producción. Eso es exactamente lo que hicimos en mi startup takzyli.pl. Para lograr esto, diseñamos y utilizamos el Clean Coder - marco de agentes de IA para la escritura autónoma de código (https://github.com/GregorD1A1/Clean-Coder-AI), que es un proyecto de código abierto, con suerte. Si funcionó para nosotros, ¿por qué no debería funcionar para ti?En esta masterclass, te mostraré cómo crear una aplicación web completa de manera (casi) autónoma y reducir drásticamente el tiempo que tú o tus empleados pasan escribiendo código.
Aporta Calidad y Seguridad al pipeline de CI/CD
DevOps.js Conf 2022DevOps.js Conf 2022
76 min
Aporta Calidad y Seguridad al pipeline de CI/CD
Workshop
Elena Vilchik
Elena Vilchik
En esta masterclass repasaremos todos los aspectos y etapas al integrar tu proyecto en el ecosistema de Calidad y Seguridad del Código. Tomaremos una aplicación web simple como punto de partida y crearemos un pipeline de CI que active el monitoreo de calidad del código. Realizaremos un ciclo completo de desarrollo, comenzando desde la codificación en el IDE y abriendo una Pull Request, y te mostraré cómo puedes controlar la calidad en esas etapas. Al final de la masterclass, estarás listo para habilitar esta integración en tus propios proyectos.
Test, Code, Repeat: Dominando el Desarrollo Asistido por AI
Productivity Conf for Devs and Tech LeadersProductivity Conf for Devs and Tech Leaders
53 min
Test, Code, Repeat: Dominando el Desarrollo Asistido por AI
Workshop
Marco Pierobon
Marco Pierobon
"Test, Code, Repeat: Dominando el Desarrollo Asistido por AI" introduce a los desarrolladores a una forma transformadora de codificación con AI como un socio colaborativo. Esta masterclass se centra en cómo los flujos de trabajo iterativos, como la técnica de emparejamiento ping pong, permiten una interacción mejorada entre la creatividad humana y la eficiencia de AI.