Enseñando ML y AI a los Programadores

Rate this content
Bookmark

A menudo se piensa que para tener éxito con Machine Learning y Deep Learning, como una rampa de acceso a la Inteligencia Artificial, se necesita un profundo conocimiento en matemáticas y cálculo, así como algún tipo de doctorado. Pero no es así. Con APIs modernas como TensorFlow, gran parte de la complejidad se abstrae en bibliotecas preconstruidas, por lo que puedes centrarte en aprender. En esta sesión, Laurence Moroney, de Google, explicará cómo ha utilizado esto para crear cursos con cientos de miles de estudiantes, y a partir de ahí, cómo se creó un programa de certificación.

This talk has been presented at ML conf EU 2020, check out the latest edition of this Tech Conference.

FAQ

El propósito principal del trabajo del autor es educar al mundo sobre la IA, mejorar su comprensión y aplicación, y aumentar el número de profesionales en este campo para expandir su impacto positivo en la sociedad.

El ciclo de vida de Gartner describe las etapas por las que pasa cualquier tecnología, comenzando con su introducción, seguido por un pico de expectativas infladas, luego una depresión de desilusión, y finalmente alcanzando una fase de productividad.

Según el autor, la IA se encuentra en la etapa del pico de expectativas infladas, donde aún hay mucho hype basado en especulaciones más que en realidades concretas de la tecnología.

El objetivo de Google es capacitar al 10% de los desarrolladores de software del mundo en inteligencia artificial y aprendizaje automático, con la intención de aumentar el número de profesionales de IA y ML en un factor de 10.

El autor desarrolló un currículo y contenido enfocado en desarrolladores que no requieren un doctorado ni conocimientos avanzados en matemáticas, ofreció cursos en línea masivos y abiertos (MOOCs), creó recursos de aprendizaje en YouTube y participó en iniciativas de capacitación dirigidas como boot camps.

Los MOOCs de IA y Deep Learning AI lanzados han alcanzado a más de 600,000 estudiantes y se espera superar el millón en el próximo año. Estos cursos también fueron reconocidos por el Foro Económico Mundial como habilidades necesarias para los trabajos del futuro.

El autor cree que capacitar a desarrolladores en IA es crucial para preparar a la fuerza laboral para los empleos emergentes de la cuarta revolución industrial, destacando el importante crecimiento de empleos relacionados con datos y IA.

El autor, siendo parte del equipo de TensorFlow, está sesgado hacia TensorFlow, destacando su versatilidad para implementar modelos en diferentes infraestructuras, desde la nube hasta sistemas integrados, aunque reconoce la competencia positiva con PyTorch.

Laurence Moroney
Laurence Moroney
34 min
02 Jul, 2021

Comments

Sign in or register to post your comment.
Video Summary and Transcription
La charla analiza el estado actual de la IA y los desafíos que enfrentan los desarrolladores en su educación. La misión de Google es capacitar al 10 por ciento de los desarrolladores del mundo en aprendizaje automático e IA. Han desarrollado especializaciones e iniciativas de capacitación para hacer que la IA sea fácil y accesible. El impacto de la educación en IA incluye exámenes de certificación rigurosos y asociaciones con universidades. La charla también destaca las tendencias de crecimiento en la industria tecnológica y la importancia de las habilidades en IA. Se recomienda TensorFlow por sus capacidades de implementación, y se enfatiza la práctica para construir una carrera en aprendizaje automático.
Available in English: Teaching ML and AI to Coders

1. Introducción a la IA y su estado actual

Short description:

Estoy emocionado de hablar sobre mi trabajo educando al mundo sobre IA y mejorando el mundo a través de la IA. También soy el autor del libro IA y Aprendizaje Automático para Programadores, un éxito de ventas reciente. Actualmente, la IA se encuentra en la fase de expectativas infladas, y mi papel es ayudar a las personas a comprender sus verdaderas capacidades. El número de profesionales de IA es de 300,000, en comparación con 30 millones.

Gracias. Estoy realmente emocionado de estar aquí hoy para hablar sobre mi trabajo de educar al mundo sobre la IA y tratar de mejorar el mundo a través de la IA. Un poco sobre mí, también soy el autor de este libro IA y Aprendizaje Automático para Programadores. Acaba de ser lanzado, por lo que es bastante nuevo, y en realidad fue el número uno en ventas en varias categorías de IA. Primero, quiero hablar un poco sobre la IA y dónde se encuentra. Y este gráfico que me gusta usar es el ciclo de vida de Gartner. Y el ciclo de vida de cualquier tecnología generalmente comienza con la introducción de la tecnología y luego alcanza este pico de expectativas infladas. El pico de expectativas infladas es algo en lo que se ve una gran cantidad de hype alrededor de la tecnología, pero ese hype no se basa realmente en nada real sobre la tecnología. Se basa en especulaciones y en la tecnología misma. Y luego, a menudo, el ciclo de vida nos lleva a la depresión de la desilusión. A pesar del nombre negativo, en realidad es algo muy positivo porque es cuando superamos las expectativas infladas. Superamos el hype y entendemos de qué se trata realmente el producto y la tecnología. Y una vez que alcanzamos ese punto, a partir de ahí podemos alcanzar la productividad. Desafortunadamente, la IA en este momento probablemente se encuentre en algún lugar de aquí en la curva. Todavía hay muchas expectativas infladas. Y solo para aclarar, a veces las expectativas infladas pueden ser positivas, donde todos están pensando en las cosas increíbles que se pueden hacer con la tecnología. Y a veces pueden ser negativas, donde las personas están aterrorizadas y tienen miedo de la tecnología. Pero sus expectativas sobre sus capacidades o lo que están infladas debido a esta curva de ciclo de hype. Pero mi trabajo en general es tratar de llevar a las personas a esta depresión de la desilusión. A veces bromeo diciendo que soy un desilusionador profesional, pero realmente con la idea de hacer que el mundo comprenda de qué se trata realmente la IA, qué se puede hacer con la IA, cómo se puede construir con la IA y a partir de ahí, luego puedes crecer hacia la productividad. Entonces, como dije, estamos aquí en este momento. Y mi pregunta entonces es por qué crees que estamos aquí en este momento. ¿Cuáles son las razones detrás de esto? La primera que mostraré es este número. Y este número es 300,000, que es el número de profesionales de IA en el mundo según una encuesta realizada por una empresa en China. Y querían echar un vistazo a por qué hay una escasez global de habilidades en torno a la IA. Esto fue hace aproximadamente dos años y medio. ¿Por qué había una escasez global de habilidades en torno a ellos? Y querían decir, bueno, cuántas personas calificadas hay. Y eran 300,000 profesionales de IA. Ahora me gusta comparar esto con este número, que es 30 millones.

2. Desafíos y Misión en Google

Short description:

Y varían enormemente. He visto algunos alrededor de 22 millones. He visto algunos alrededor de 35 millones. Por ejemplo, en la WWDC de este año, Tim Cook mencionó que solo en el ecosistema de Apple hay 28 millones de desarrolladores. Nuestra visión en Google es capacitar al 10 por ciento de los desarrolladores del mundo para que sean efectivos en el aprendizaje automático y la inteligencia artificial. Comenzamos este viaje hace aproximadamente 18 meses y hoy quiero compartir las estrategias que utilizamos y los resultados que hemos obtenido. Al trabajar con desarrolladores de software, recibí comentarios sobre las dificultades que enfrentan, incluido el uso de terminología desconocida y conceptos complejos. Esto presentó un desafío, pero se convirtió en nuestra misión en Google superar estos obstáculos.

Y hay varias estimaciones sobre el número de desarrolladores de software a nivel mundial. Y varían enormemente. He visto algunos alrededor de 22 millones. He visto algunos alrededor de 35 millones. Voy a elegir un número aproximado en el medio de eso y fue 30 millones. Y podría argumentar que en realidad el número es mucho mayor que este.

Por ejemplo, en la WWDC de este año, Tim Cook mencionó que solo en el ecosistema de Apple hay 28 millones de desarrolladores. Entonces, si hago una regla general de que la mitad de los desarrolladores del mundo están en el ecosistema de Apple, podríamos estar más cerca de los 60 millones de desarrolladores a nivel mundial. Bueno, trabajemos con este número de 30 millones. Ahora recuerda que según la encuesta había 300,000 profesionales de IA. Según mi estimación, hay 30 millones de desarrolladores de software. Entonces, nuestra visión en Google es: ¿qué pasaría si pudiéramos capacitar al 10 por ciento de los desarrolladores del mundo para que sean efectivos en el aprendizaje automático y la inteligencia artificial? Y si lo lográramos, tendríamos tres millones de desarrolladores de IA y ML, que es 10 veces este número. Así que hicimos eso nuestro objetivo. ¿Podemos aumentar el número de profesionales a nivel mundial en un factor de 10? No en un número de 10. Así que dijimos que haríamos de esto nuestro objetivo. Comenzamos este viaje hace aproximadamente 18 meses, un poco más de 18 meses. Y hoy quiero compartir las estrategias que utilizamos y los resultados que hemos obtenido. Pero primero, al trabajar con desarrolladores de software y cuando hablo con ellos y cuando veo cómo están siendo capacitados, recibí muchos comentarios sobre por qué pensaban que era difícil y por qué era algo que les interesaba pero que iba a ser demasiado difícil para ellos dedicar mucho de su tiempo y de su tiempo de estudio para poder aprenderlo. Y empecé a ver muchas terminologías como las que he incluido en este gráfico, personas que decían que era difícil. Había mucha matemática. Había muchos términos con los que no estaban familiarizados, como aprendizaje no supervisado o aprendizaje supervisado. Realmente, al igual que yo, no habían hecho cosas como cálculo y probabilidad en 25 años. Y como resultado, la cantidad de conceptos que se les presentaban solo para comenzar hacía que fuera como un gran obstáculo que tenían que superar para poder comenzar a transformar su carrera y transformar su conjunto de habilidades para convertirse en un desarrollador de aprendizaje automático o IA. Así que vi eso como un desafío. Y una de las cosas que hacemos en Google

QnA

Check out more articles and videos

We constantly think of articles and videos that might spark Git people interest / skill us up or help building a stellar career

Construyendo un Asistente AI Activado por Voz con Javascript
JSNation 2023JSNation 2023
21 min
Construyendo un Asistente AI Activado por Voz con Javascript
Top Content
This Talk discusses building a voice-activated AI assistant using web APIs and JavaScript. It covers using the Web Speech API for speech recognition and the speech synthesis API for text to speech. The speaker demonstrates how to communicate with the Open AI API and handle the response. The Talk also explores enabling speech recognition and addressing the user. The speaker concludes by mentioning the possibility of creating a product out of the project and using Tauri for native desktop-like experiences.
IA y Desarrollo Web: ¿Exageración o Realidad?
JSNation 2023JSNation 2023
24 min
IA y Desarrollo Web: ¿Exageración o Realidad?
Top Content
This talk explores the use of AI in web development, including tools like GitHub Copilot and Fig for CLI commands. AI can generate boilerplate code, provide context-aware solutions, and generate dummy data. It can also assist with CSS selectors and regexes, and be integrated into applications. AI is used to enhance the podcast experience by transcribing episodes and providing JSON data. The talk also discusses formatting AI output, crafting requests, and analyzing embeddings for similarity.
El Ascenso del Ingeniero de IA
React Summit US 2023React Summit US 2023
30 min
El Ascenso del Ingeniero de IA
The rise of AI engineers is driven by the demand for AI and the emergence of ML research and engineering organizations. Start-ups are leveraging AI through APIs, resulting in a time-to-market advantage. The future of AI engineering holds promising results, with a focus on AI UX and the role of AI agents. Equity in AI and the central problems of AI engineering require collective efforts to address. The day-to-day life of an AI engineer involves working on products or infrastructure and dealing with specialties and tools specific to the field.
TensorFlow.js 101: Aprendizaje automático en el navegador y más allá
ML conf EU 2020ML conf EU 2020
41 min
TensorFlow.js 101: Aprendizaje automático en el navegador y más allá
TensorFlow.js enables machine learning in the browser and beyond, with features like face mesh, body segmentation, and pose estimation. It offers JavaScript prototyping and transfer learning capabilities, as well as the ability to recognize custom objects using the Image Project feature. TensorFlow.js can be used with Cloud AutoML for training custom vision models and provides performance benefits in both JavaScript and Python development. It offers interactivity, reach, scale, and performance, and encourages community engagement and collaboration between the JavaScript and machine learning communities.
El Flujo de Trabajo del Desarrollador Asistido por IA: Construye Más Rápido e Inteligente Hoy
JSNation US 2024JSNation US 2024
31 min
El Flujo de Trabajo del Desarrollador Asistido por IA: Construye Más Rápido e Inteligente Hoy
AI is transforming software engineering by using agents to help with coding. Agents can autonomously complete tasks and make decisions based on data. Collaborative AI and automation are opening new possibilities in code generation. Bolt is a powerful tool for troubleshooting, bug fixing, and authentication. Code generation tools like Copilot and Cursor provide support for selecting models and codebase awareness. Cline is a useful extension for website inspection and testing. Guidelines for coding with agents include defining requirements, choosing the right model, and frequent testing. Clear and concise instructions are crucial in AI-generated code. Experienced engineers are still necessary in understanding architecture and problem-solving. Energy consumption insights and sustainability are discussed in the Talk.
Aplicaciones Web del Futuro con Web AI
JSNation 2024JSNation 2024
32 min
Aplicaciones Web del Futuro con Web AI
Web AI in JavaScript allows for running machine learning models client-side in a web browser, offering advantages such as privacy, offline capabilities, low latency, and cost savings. Various AI models can be used for tasks like background blur, text toxicity detection, 3D data extraction, face mesh recognition, hand tracking, pose detection, and body segmentation. JavaScript libraries like MediaPipe LLM inference API and Visual Blocks facilitate the use of AI models. Web AI is in its early stages but has the potential to revolutionize web experiences and improve accessibility.

Workshops on related topic

IA a demanda: IA sin servidor
DevOps.js Conf 2024DevOps.js Conf 2024
163 min
IA a demanda: IA sin servidor
Top Content
Featured WorkshopFree
Nathan Disidore
Nathan Disidore
En esta masterclass, discutimos los méritos de la arquitectura sin servidor y cómo se puede aplicar al espacio de la IA. Exploraremos opciones para construir aplicaciones RAG sin servidor para un enfoque más lambda-esque a la IA. A continuación, nos pondremos manos a la obra y construiremos una aplicación CRUD de muestra que te permite almacenar información y consultarla utilizando un LLM con Workers AI, Vectorize, D1 y Cloudflare Workers.
AI para Desarrolladores de React
React Advanced 2024React Advanced 2024
142 min
AI para Desarrolladores de React
Featured Workshop
Eve Porcello
Eve Porcello
El conocimiento de las herramientas de AI es fundamental para preparar el futuro de las carreras de los desarrolladores de React, y la suite de herramientas de AI de Vercel es una vía de acceso accesible. En este curso, examinaremos más de cerca el Vercel AI SDK y cómo esto puede ayudar a los desarrolladores de React a construir interfaces de transmisión con JavaScript y Next.js. También incorporaremos APIs de terceros adicionales para construir y desplegar una aplicación de visualización de música.
Temas:- Creación de un Proyecto de React con Next.js- Elección de un LLM- Personalización de Interfaces de Transmisión- Construcción de Rutas- Creación y Generación de Componentes - Uso de Hooks (useChat, useCompletion, useActions, etc)
Aprovechando LLMs para Construir Experiencias de IA Intuitivas con JavaScript
JSNation 2024JSNation 2024
108 min
Aprovechando LLMs para Construir Experiencias de IA Intuitivas con JavaScript
Featured Workshop
Roy Derks
Shivay Lamba
2 authors
Hoy en día, todos los desarrolladores están utilizando LLMs en diferentes formas y variantes, desde ChatGPT hasta asistentes de código como GitHub CoPilot. Siguiendo esto, muchos productos han introducido capacidades de IA integradas, y en este masterclass haremos que los LLMs sean comprensibles para los desarrolladores web. Y nos adentraremos en la codificación de tu propia aplicación impulsada por IA. No se necesita experiencia previa en trabajar con LLMs o aprendizaje automático. En su lugar, utilizaremos tecnologías web como JavaScript, React que ya conoces y amas, al mismo tiempo que aprendemos sobre algunas nuevas bibliotecas como OpenAI, Transformers.js
Masterclass: Qué son y cómo aprovechar los LLMs
React Summit 2024React Summit 2024
66 min
Masterclass: Qué son y cómo aprovechar los LLMs
Featured Workshop
Nathan Marrs
Haris Rozajac
2 authors
Únete a Nathan en esta sesión práctica donde primero aprenderás a alto nivel qué son los modelos de lenguaje grandes (LLMs) y cómo funcionan. Luego sumérgete en un ejercicio de codificación interactivo donde implementarás la funcionalidad de LLM en una aplicación de ejemplo básica. Durante este ejercicio, adquirirás habilidades clave para trabajar con LLMs en tus propias aplicaciones, como la ingeniería de indicaciones y la exposición a la API de OpenAI.
Después de esta sesión, tendrás una idea de qué son los LLMs y cómo se pueden utilizar prácticamente para mejorar tus propias aplicaciones.
Tabla de contenidos:- Demostración interactiva de la implementación de funciones básicas impulsadas por LLM en una aplicación de demostración- Discutir cómo decidir dónde aprovechar los LLMs en un producto- Lecciones aprendidas sobre la integración con OpenAI / descripción general de la API de OpenAI- Mejores prácticas para la ingeniería de indicaciones- Desafíos comunes específicos de React (gestión de estado :D / buenas prácticas de UX)
Trabajando con OpenAI y la Ingeniería de Prompts para Desarrolladores de React
React Advanced 2023React Advanced 2023
98 min
Trabajando con OpenAI y la Ingeniería de Prompts para Desarrolladores de React
Top Content
Workshop
Richard Moss
Richard Moss
En esta masterclass daremos un recorrido por la IA aplicada desde la perspectiva de los desarrolladores de front end, enfocándonos en las mejores prácticas emergentes cuando se trata de trabajar con LLMs para construir grandes productos. Esta masterclass se basa en los aprendizajes obtenidos al trabajar con la API de OpenAI desde su debut en noviembre pasado para construir un MVP funcional que se convirtió en PowerModeAI (una herramienta de creación de ideas y presentaciones orientada al cliente).
En la masterclass habrá una mezcla de presentación y ejercicios prácticos para cubrir temas que incluyen:
- Fundamentos de GPT- Trampas de los LLMs- Mejores prácticas y técnicas de ingeniería de prompts- Uso efectivo del playground- Instalación y configuración del SDK de OpenAI- Enfoques para trabajar con la API y la gestión de prompts- Implementación de la API para construir una aplicación orientada al cliente potenciada por IA- Ajuste fino y embeddings- Mejores prácticas emergentes en LLMOps
Construyendo Aplicaciones AI para la Web
React Day Berlin 2023React Day Berlin 2023
98 min
Construyendo Aplicaciones AI para la Web
Workshop
Roy Derks
Roy Derks
Hoy en día, cada desarrollador está utilizando LLMs en diferentes formas y figuras. Muchos productos han introducido capacidades AI incorporadas, y en esta masterclass aprenderás cómo construir tu propia aplicación AI. No se necesita experiencia en la construcción de LLMs o en el aprendizaje automático. En cambio, utilizaremos tecnologías web como JavaScript, React y GraphQL que ya conoces y amas.