When I was growing up in the USA to Israeli parents, most of my books and movies from an early age were actually in Hebrew, of course, to teach me the language before the English took over my brain.
One tape that I particularly loved was called Hakina Nekhama, Nekhama the Louse, which if you're not familiar with this word, is the singular version of lice. Gross, I know.
The story told of this louse who decided that she doesn't want to stay in one head forever. She wants to get out there and travel the world, see different heads and different cities. But obviously everybody hates her and wants her gone, and she journeys tirelessly from one head to another until she accidentally lands on the head of a bald man, who is actually very excited to have her because now he's got the same problem as people with hair. They become friends and live happily ever after.
Now this is obviously a ridiculous story, but when I joined Vonage last year and learned about our communications platform and how many messages it handles per day, I considered the one-in-a-million little notification making its way on a rapid fire journey of 5, 10, just milliseconds arriving to where it needs to be, it suddenly made me think of that pink little louse I loved as a kid, one-in-million, who with purpose and ambition eventually made it to the head of the bald man who wanted her, of her perfect match, precisely where she needed to be. Miraculous, isn't it?
Here's the thing though, in the world of children's books, it's happily ever after, but in real life, things don't go as planned, objects get lost, notifications never make it to their destination, so let's talk about this real life of infrastructure engineering, of tracing our steps and ensuring that we know what's going on at every point of the dangerous journey. But first, a little context.
The Vonage Business Communications platform, the system I'll talk about today, offers capabilities for voice, messaging, video, and voicemail on both desktop and mobile. The platform is home to 150,000 users who through all these functionalities produce 800 notifications per second. And the kicker? All those notifications get to where they need to be in 15 milliseconds, because that's the kind of standards we're used to nowadays. So what does this 15 millisecond journey of a cute little notification look like? Let's start at the beginning.
Say you're on your computer using the desktop app. Your laptop, through the client, connects to the messaging infrastructure that we call the bus station and makes an introduction, Hey, I belong to John's computer. I'd like to sign up for notifications. The bus station pings its API, which we named Frizzle because the children's book references never end, to tell it about the new connection. All the identifying information gets stored. Frizzle communicates with the message broker, which creates a new queue for your particular user and with the help of the message protocol determines which queue to put your messages in. The protocol returns a URL and thus a WebSocket connection is formed between your client and this entire thing that we call the bus. Now on the other end, a message gets sent to you. It hits the Frizzle API belonging to the bus, and Frizzle sends the notification to RabbitMQ, and the Message Protocol sends it to your device. Cool.
But you're wondering now, what about cell phones? The mobile app? I can't exactly maintain a WebSocket connection with the phone at all times, can I? So what about those notorious push notifications from the title of my talk? And more importantly, how am I following the progress of those notifications because with 800 notifications per second, it can be very easy to quickly lose track. Well, when you fire up your mobile app, a similar flow happens. Your phone connects to the bus station and introduces itself with your ID and information about your device and something called a push token, assuming you clicked Allow Notifications in the app. The API handles and stores away this information, and you are now signed up to receive notifications. Now, when Frizzle sends the notification to your queue, that notification also gets sent in parallel to what we call the bus HTTP service. Written in Node, the service knows whether you've signed up to receive push notifications.
Comments