Build a UI that Learns - Intelligent Prefetching with React and TensorFlow.js

Rate this content
Bookmark

How to build a UI that LEARNS? Being able to learn and predict the behavior of users has many powerful applications, one of them is the chance to boost the UI performance prefetching code & resources before the user reaches them. In this talk, we describe a high-level implementation of an intelligent prefetcher, using ReactJS and TensorFlow.js. We use neural networks to learn the user's behaviour, and leverages React's lazy-loading API to prefetch components according to predictions. There is a chance for Frontend developers to explore the powerful combination of UI and AI.

This talk has been presented at React Summit Remote Edition 2021, check out the latest edition of this React Conference.

FAQ

React's code splitting API allows for components to be imported only when they are needed, rather than at the initial loading of the application. This reduces the initial bundle size and speeds up the initial load time.

Machine learning, particularly using neural networks, can analyze user interaction sequences to predict future actions. This allows applications to prefetch content dynamically, improving efficiency and user experience.

Dynamic imports in React allow developers to load components or routes only when they are necessary, rather than at startup. This reduces initial load times and system resource demands, enhancing overall performance.

LSTM (Long Short-Term Memory) neural networks are ideal for sequence prediction problems, such as predicting user navigation patterns in React. They help in accurately forecasting user actions for effective prefetching of components.

React context is used to provide global state management across components. It can store and manage predictive data and machine learning models, enabling components to access predictions and trigger prefetching based on predicted user actions.

Intelligent prefetching in React involves predicting user behavior to load components before they are needed, improving application performance by reducing wait times for component rendering.

TensorFlow.js is a library that allows developers to implement machine learning models directly in the browser, using WebGL for computation. This enables React applications to run machine learning algorithms efficiently for tasks like user behavior prediction.

Eliran Natan
Eliran Natan
17 min
14 May, 2021

Comments

Sign in or register to post your comment.
Video Summary and Transcription
Today's talk explores intelligent prefetching in React, including code splitting, lazy loading, and prefetching to improve performance. The use of neural networks for sequence prediction and training with actual user behavior is discussed. React context is used to link UI handlers with predictions and prefetching, enabling dynamic content import and improved user experience. The combination of AI and UI development is showcased in this personal project.

1. Introduction to Intelligent Prefetching in React

Short description:

Today's talk is about intelligent prefetching in React. We discuss the issues with bundle size and loading times in single-page applications and how React code splitting can help. We also explore the concept of prefetching components and using lazy loading for entire routes to improve performance. Additionally, we delve into the question of predicting user behavior and how supervised learning, specifically neural networks, can be used for sequence prediction.

Hello all and welcome to this session. My name is Eli Ranatan, and I'm happy to be here in React Summit. Today I will talk about intelligent prefetching in React. So we start by talking about prefetching of code, later we show how we can predict the user behavior using machine learning, and finally we combine those solutions to form fast React applications.

So I want to start by talking about the context. Usually we are building those amazing single-page applications and eventually we turn up with this huge bundle size that eventually causes problems in loading times, slowness, and potentially harming the user experience. So what we can do is to use the React code splitting API in order to import components on demand. So here instead of just importing the chart component, increasing my bundle size, I'm lazy loading the chart component and the actual fetching of code would happen only when we render it. But that does not solve the problem entirely, right? Because we are just shifting the fetching time to somewhere else. Whenever the user will actually want to render this chart component, then it will have to wait for the fetching to occur, and that can affect the loading time and harm the user experience. So what about this crazy idea? We could prefetch, we could break this trade-off by prefetching the chart component. So using the time that the user is just staring at the screen and before it ever reaches the we could prepare this content, we could use the dynamic import feature to dynamically import the component and then overriding this variable. Now, we could do that if we had some indication or some educated guess about the user's next move. We could use this trick to further increase the performance of our applications if we are doing that for entire routes. So if I have this routing between dashboards and products, I could use a lazy loading to lazy load those routes. And then conditionally, if I have some indication about the user's next move, I could dynamically import those routes, saving a lot of time.

So that brings us to the question, and that's a very interesting question, of how we can predict the next move of user. So let's just analyze this question for a bit. We have this complicated single-page application that is combined from a lot of different components. And we can list those different triggers, those actions, links, buttons that the user can interact with, or at least those that are interesting in the sense that they would cause a rendering of other large components. Now we could keep track on the user's behavior and make this perform this ordered sequence of interactions that the user is performing. And the question is how we can base on this sequence how we can predict the next element in that sequence. So what we need is this intelligent mechanism that receives a sequence and returns the prediction or estimation of the next item in that sequence. And in machine learning we call this problem a sequence prediction. So we can use supervised learning specifically neural network in order to figure out this estimation. So a neural network will receive an encoding of that sequence as this series of numbers. Each number is an identification of a certain trigger and returns this probability distribution across all the possible triggers that the user can interact with. So each output would represent the chance that that corresponding element will be the next element in the sequence. So this is a supervised learning and the neural network acts as a function approximator. The function receives a sequence and returns a probability distribution.

2. Training Neural Network with User Behavior

Short description:

We use the user's actual behavior as examples to train the neural network. One-hot encoding is used to break numerical correlations between elements. The LSTM type of neural network is crucial for sequence predictions. TensorFlow.js library enables implementation in the browser environment. The dot predict command provides probability predictions for each element. Training the network with the dot fit command using actual user behavior as examples can be time-consuming.

Now once that we have this output, we could just take the maximal argument and derive from that the next UI element that the user is about to interact with. Now of course that those predictions will be meaningless unless we train the network. So in supervised learning, we have to supply the network with examples. And the best source for those examples is the actual behavior of the user. So we could sample the behavior of the user, taking those sequences and feed the neural network with those examples, basically telling the neural network this is the actual behavior of the user, please adjust your predictions accordingly.

Now I think it's cool that we are using the user in order to train the application. So the more that the user uses the application, then it trains it accordingly. And when the user changes its behavior over time, then the application can adapt. Now specifically, speaking about implementation, this predictor can be implemented as a neural network. And what you are seeing here is that the input of that neural network will be... We are using here one-hot encoding instead of just pure numbers. And this is because we want to break any numerical correlation between those elements. There is no meaning to say that a dashboard is smaller than products, because it is represented by the number three and not by the number 21. So this is the way to break this correlation.

Now once that we have... The most important thing in the architecture of your neural network is that we have to use this LSTM type of neural network. This is the best type that can support sequence predictions. It's also important to notice that the input layer is here. The number of units in the input layer should match the length of the sequences that we are working with, and the number of units in the output there should match the number... All the possible triggers that the user can interact with. Now, once that we have the output from the network, we can attach it to the corresponding element in the user experience and assume that the user is about to hit this element.

Now, implementation-wise, we have to implement this mechanism somewhere in the browser environment, and we can do that using TensorFlow.js library. So TensorFlow.js library is based on WebGL, and it allows us to implement machine learning algorithms within the browser environment. So we are using the sequential command in order to stack layers in the network one after the other, and we are specifying these LSTM type layer, specifying all the shape of the input as a matrix of binaric numbers. And eventually, once we have this network, we can use the dot predict command supplying a sequence and asking to predict the probability for each element. Now, those predictions will be meaningless unless we train the network, as we say, and for the training part, we would use the dot fit command. So we're supplying this batch of sequences and the correlated labels. And those labels represent elements. So we are taking the actual behavior of the user and supply it as examples to the fitting mechanism. Now, training the network could take time.

Check out more articles and videos

We constantly think of articles and videos that might spark Git people interest / skill us up or help building a stellar career

A Guide to React Rendering Behavior
React Advanced 2022React Advanced 2022
25 min
A Guide to React Rendering Behavior
Top Content
This transcription provides a brief guide to React rendering behavior. It explains the process of rendering, comparing new and old elements, and the importance of pure rendering without side effects. It also covers topics such as batching and double rendering, optimizing rendering and using context and Redux in React. Overall, it offers valuable insights for developers looking to understand and optimize React rendering.
Building Better Websites with Remix
React Summit Remote Edition 2021React Summit Remote Edition 2021
33 min
Building Better Websites with Remix
Top Content
Remix is a web framework built on React Router that focuses on web fundamentals, accessibility, performance, and flexibility. It delivers real HTML and SEO benefits, and allows for automatic updating of meta tags and styles. It provides features like login functionality, session management, and error handling. Remix is a server-rendered framework that can enhance sites with JavaScript but doesn't require it for basic functionality. It aims to create quality HTML-driven documents and is flexible for use with different web technologies and stacks.
React Compiler - Understanding Idiomatic React (React Forget)
React Advanced 2023React Advanced 2023
33 min
React Compiler - Understanding Idiomatic React (React Forget)
Top Content
Watch video: React Compiler - Understanding Idiomatic React (React Forget)
Joe Savona
Mofei Zhang
2 authors
The Talk discusses React Forget, a compiler built at Meta that aims to optimize client-side React development. It explores the use of memoization to improve performance and the vision of Forget to automatically determine dependencies at build time. Forget is named with an F-word pun and has the potential to optimize server builds and enable dead code elimination. The team plans to make Forget open-source and is focused on ensuring its quality before release.
Using useEffect Effectively
React Advanced 2022React Advanced 2022
30 min
Using useEffect Effectively
Top Content
Today's Talk explores the use of the useEffect hook in React development, covering topics such as fetching data, handling race conditions and cleanup, and optimizing performance. It also discusses the correct use of useEffect in React 18, the distinction between Activity Effects and Action Effects, and the potential misuse of useEffect. The Talk highlights the benefits of using useQuery or SWR for data fetching, the problems with using useEffect for initializing global singletons, and the use of state machines for handling effects. The speaker also recommends exploring the beta React docs and using tools like the stately.ai editor for visualizing state machines.
Routing in React 18 and Beyond
React Summit 2022React Summit 2022
20 min
Routing in React 18 and Beyond
Top Content
Routing in React 18 brings a native app-like user experience and allows applications to transition between different environments. React Router and Next.js have different approaches to routing, with React Router using component-based routing and Next.js using file system-based routing. React server components provide the primitives to address the disadvantages of multipage applications while maintaining the same user experience. Improving navigation and routing in React involves including loading UI, pre-rendering parts of the screen, and using server components for more performant experiences. Next.js and Remix are moving towards a converging solution by combining component-based routing with file system routing.
(Easier) Interactive Data Visualization in React
React Advanced 2021React Advanced 2021
27 min
(Easier) Interactive Data Visualization in React
Top Content
This Talk is about interactive data visualization in React using the Plot library. Plot is a high-level library that simplifies the process of visualizing data by providing key concepts and defaults for layout decisions. It can be integrated with React using hooks like useRef and useEffect. Plot allows for customization and supports features like sorting and adding additional marks. The Talk also discusses accessibility concerns, SSR support, and compares Plot to other libraries like D3 and Vega-Lite.

Workshops on related topic

React Performance Debugging Masterclass
React Summit 2023React Summit 2023
170 min
React Performance Debugging Masterclass
Top Content
Featured WorkshopFree
Ivan Akulov
Ivan Akulov
Ivan’s first attempts at performance debugging were chaotic. He would see a slow interaction, try a random optimization, see that it didn't help, and keep trying other optimizations until he found the right one (or gave up).
Back then, Ivan didn’t know how to use performance devtools well. He would do a recording in Chrome DevTools or React Profiler, poke around it, try clicking random things, and then close it in frustration a few minutes later. Now, Ivan knows exactly where and what to look for. And in this workshop, Ivan will teach you that too.
Here’s how this is going to work. We’ll take a slow app → debug it (using tools like Chrome DevTools, React Profiler, and why-did-you-render) → pinpoint the bottleneck → and then repeat, several times more. We won’t talk about the solutions (in 90% of the cases, it’s just the ol’ regular useMemo() or memo()). But we’ll talk about everything that comes before – and learn how to analyze any React performance problem, step by step.
(Note: This workshop is best suited for engineers who are already familiar with how useMemo() and memo() work – but want to get better at using the performance tools around React. Also, we’ll be covering interaction performance, not load speed, so you won’t hear a word about Lighthouse 🤐)
Concurrent Rendering Adventures in React 18
React Advanced 2021React Advanced 2021
132 min
Concurrent Rendering Adventures in React 18
Top Content
Featured WorkshopFree
Maurice de Beijer
Maurice de Beijer
With the release of React 18 we finally get the long awaited concurrent rendering. But how is that going to affect your application? What are the benefits of concurrent rendering in React? What do you need to do to switch to concurrent rendering when you upgrade to React 18? And what if you don’t want or can’t use concurrent rendering yet?

There are some behavior changes you need to be aware of! In this workshop we will cover all of those subjects and more.

Join me with your laptop in this interactive workshop. You will see how easy it is to switch to concurrent rendering in your React application. You will learn all about concurrent rendering, SuspenseList, the startTransition API and more.
React Hooks Tips Only the Pros Know
React Summit Remote Edition 2021React Summit Remote Edition 2021
177 min
React Hooks Tips Only the Pros Know
Top Content
Featured Workshop
Maurice de Beijer
Maurice de Beijer
The addition of the hooks API to React was quite a major change. Before hooks most components had to be class based. Now, with hooks, these are often much simpler functional components. Hooks can be really simple to use. Almost deceptively simple. Because there are still plenty of ways you can mess up with hooks. And it often turns out there are many ways where you can improve your components a better understanding of how each React hook can be used.You will learn all about the pros and cons of the various hooks. You will learn when to use useState() versus useReducer(). We will look at using useContext() efficiently. You will see when to use useLayoutEffect() and when useEffect() is better.
React, TypeScript, and TDD
React Advanced 2021React Advanced 2021
174 min
React, TypeScript, and TDD
Top Content
Featured WorkshopFree
Paul Everitt
Paul Everitt
ReactJS is wildly popular and thus wildly supported. TypeScript is increasingly popular, and thus increasingly supported.

The two together? Not as much. Given that they both change quickly, it's hard to find accurate learning materials.

React+TypeScript, with JetBrains IDEs? That three-part combination is the topic of this series. We'll show a little about a lot. Meaning, the key steps to getting productive, in the IDE, for React projects using TypeScript. Along the way we'll show test-driven development and emphasize tips-and-tricks in the IDE.
Web3 Workshop - Building Your First Dapp
React Advanced 2021React Advanced 2021
145 min
Web3 Workshop - Building Your First Dapp
Top Content
Featured WorkshopFree
Nader Dabit
Nader Dabit
In this workshop, you'll learn how to build your first full stack dapp on the Ethereum blockchain, reading and writing data to the network, and connecting a front end application to the contract you've deployed. By the end of the workshop, you'll understand how to set up a full stack development environment, run a local node, and interact with any smart contract using React, HardHat, and Ethers.js.
Designing Effective Tests With React Testing Library
React Summit 2023React Summit 2023
151 min
Designing Effective Tests With React Testing Library
Top Content
Featured Workshop
Josh Justice
Josh Justice
React Testing Library is a great framework for React component tests because there are a lot of questions it answers for you, so you don’t need to worry about those questions. But that doesn’t mean testing is easy. There are still a lot of questions you have to figure out for yourself: How many component tests should you write vs end-to-end tests or lower-level unit tests? How can you test a certain line of code that is tricky to test? And what in the world are you supposed to do about that persistent act() warning?
In this three-hour workshop we’ll introduce React Testing Library along with a mental model for how to think about designing your component tests. This mental model will help you see how to test each bit of logic, whether or not to mock dependencies, and will help improve the design of your components. You’ll walk away with the tools, techniques, and principles you need to implement low-cost, high-value component tests.
Table of contents- The different kinds of React application tests, and where component tests fit in- A mental model for thinking about the inputs and outputs of the components you test- Options for selecting DOM elements to verify and interact with them- The value of mocks and why they shouldn’t be avoided- The challenges with asynchrony in RTL tests and how to handle them
Prerequisites- Familiarity with building applications with React- Basic experience writing automated tests with Jest or another unit testing framework- You do not need any experience with React Testing Library- Machine setup: Node LTS, Yarn